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In this paper I firstly recollect some of the motivations for many-valued logics, both those such
as the ÃLukasiewicz fuzzy logic (ÃLℵ), which accommodates intermediate degrees of truth and those
which treat extra truth values as truth value gaps or gluts, such as the Strong Kleene Logic (K3)
and the Logic of Paradox (LP ). I then develop a type of logical system which is essentially a
combination of ÃLℵ and FDE, consider conditionals in such a type of logic and sketch some possible
applications. Prior to concluding, I sketch how this fuzzy FDE can be used as the basis of a basic
fuzzy relevant logic.

Many-Valued Logic

Many-valued logics extend classical logic by adding extra truth values, beyond the classical two:
true and false. There are various motivations for doing so, following are some main ones.

Fuzzy Logic

Fuzzy logic and fuzzy set theory reject the classical dichotomy between truth and falsity and allow
for degrees of truth and set membership.

There are two senses in which the term fuzzy logic is used. Fuzzy logic in the broad sense
denotes the paradigm of fuzzy reasoning which has extensive application in artificial intelligence,
natural language analysis and engineering control systems which control physical world events and
need to be sensitive to changes of degree in environmental factors. One of the philosophically
interesting applications of fuzzy logic is to the issue of vagueness. Fuzzy logic in the narrow sense
is a branch of many-valued symbolic logic with a fuzzy notion of truth, developed in the spirit of
classical logic. It is concerned with the development of formal systems with fuzzy truth values and
the study of the types of properties of formal systems which would interest a logician.1

One of the most important formalisations of fuzzy logic in this narrow sense is the fuzzy logic
ÃLℵ, which generalises the ÃLukasiewicz many-valued logics. The connectives of this family of logics
are defined as follows:

f¬(x) = 1− x

f∧(x, y) = min(x, y)

f∨(x, y) = max(x, y)

f→(x, y) = min(1, 1− x + y)
1Petr Hájek, ‘Fuzzy Logic’, The Stanford Encyclopedia of Philosophy (Fall 2002 Edition), Edward N. Zalta (ed.),

URL = <http://plato.stanford.edu/archives/fall2002/entries/logic-fuzzy/#1 >.
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The set of truth values for ÃLℵ are the real numbers between 0 and 1, written as [0,1]. 1 is the
only designated truth degree. A more general fuzzy logic, ÃL, can be obtained by the addition of a
variable δ to the language, such that δ ∈ [0, 1] and the set of designated values, Dδ, is {x|x ≥ δ}.2

Truth Value Gaps

Another motivation for considering truth values beyond those of classical logic are truth-value gaps.
One place where the simple dichotomy of truth and falsity seems to come unstuck is in situations
involving future contingents. For example, it seems that a statement such as ‘The 35th prime
minister of Australia will be a woman’ is neither true nor false.

Another reason for supposing there are gaps are denotation failures. For example, some have
argued that statements containing a non-denoting name, such as ‘The present king of France is
bald’, have no truth value. Similarly, statements containing category mistakes, such as ‘10 is a loud
number’ or ‘The capital of Australia is 10’, might be truth valueless or meaningless, so that they
must be assigned a truth value alternative to the classical ones of true and false

The logic K3, philosophically motivated by consideration of truth-value gaps, introduces a third
truth value n to classical logic, to be thought of as neither true nor false. The truth tables for its
connectives, ¬, ∧ and ∨ and → are defined as follows:

f¬ 0
1 0
n n

0 1

f∧ 1 n 0
1 1 n 0
n n n 0
0 0 0 0

f∨ 1 n 0
1 1 1 1
n 1 n n

0 1 n 0

f→ 1 n 0
1 1 n 0
n 1 n n

0 1 1 1

The sole designated value for this logic is 1. The logic, ÃL3, replaces the K3 implication connective
with one given by the following truth table:

f→ 1 n 0
1 1 n 0
n 1 1 n

0 1 1 1

Truth Value Gluts

Another motivation for considering truth values beyond those of classical logic are truth-value gluts.
One reason for supposing that there are truth-value gluts concerns the paradoxes of self-reference.
A classic example is the barber paradox: A village has a barber in it, who shaves all and only the
people who do not shave themselves. Who shaves the barber? If he shaves himself, then he does
no, but if he does not shave himself, then he does. This argument seems sound yet has a conclusion
of the form B ∧ ¬B, so a suitable logic might be one which tolerates such contradictions.

Another reason concerns inconsistent situations. In many cases it ought to be possible to reason
with inconsistent information in a controlled and discriminating way. For example, a computer game
might have a set of rules for the behaviour of a type of character in the game. A modification of

2Graham Priest, An Introduction to Non-Classical Logic (Volume I), Cambridge, Cambridge University Press,
2001, p. 216.
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the character’s abilities in a subsequent version of the game might mean that a new rule is added
to this set which makes it inconsistent. Rather than succumbing to the classical principle anything
follows from a contradiction, it is preferable that the system tolerate this inconsistent information
in some suitable way, so that the game continues without collapsing into triviality.

The logic LP , philosophically motivated by consideration of truth-value gluts, introduces a
third truth value b to classical logic, to be thought of as both true and false. The truth tables for
its connectives, ¬, ∧ and ∨ and → are the same as those for K3, replacing n with b. The two
designated values for this logic are 1 and b.

The logic, RM3, replaces the LP implication connective with one given by the following truth
table:

f→ 1 b 0
1 1 0 0
b 1 b 0
0 1 1 1

FDE

The logic first degree entailment (FDE) is essentially a combination of the 3-valued logics such as
K3 and L3 which treat their third truth value as a gap and the 3-valued logics such as LP and
RM3 which treat their third truth value as a glut. A simple many-valued semantics can be given
for this logic, resulting in a 4-valued logic with values 1, 0, b and n. The truth conditions for the
connectives of this logic are given in the following truth tables:

f¬
1 0
b b

n n

0 1

f∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

f∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b

n 1 1 n n

0 1 b n 0

Figure 1 depicts the diamond lattice corresponding to FDE.
An alternative semantics for this logic is a relational semantics. The basic idea is that instead of

formulating interpretations as functions, mapping each proposition to one of the four truth values,
they can be formulated as relations between propositions and the two classical truth values. Given
the two truth values 1 and 0, there are four ways in which a formula may relate to them; it may
relate to 1 and not 0 (1), 0 and not 1 (0), neither 1 nor 0 (n) and both 1 and 0 (b). This semantics
better emphasises the fact that the two extra ‘truth values’ in FDE actually represent the absence
or presence of both truth and falsity.

Gaps, Gluts and Fuzziness

Now, we have seen how many-valued logics can be used for logics in which the extra values represent
intermediate degrees of truth (i.e. ÃLℵ) or for logics in which the extra values represent truth-value
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Figure 1: FDE diamond lattice

gaps and gluts (i.e. FDE ). I now come to the development of a type of logic which essentially
combines both of these rationales.3

Truth values in this type of logic can be represented with a tuple, (t, f), where t, f ∈ [0, 1] and
where from a relational perspective t represents the degree to which a formula relates to true and
f represents the degree to which a formula relates to false. The lattice resulting from a conversion
of the FDE truth values 1, 0, n and b to their tuple counterparts is depicted in figure 2.

This type of logic can be defined by the formal structure 〈n, T ,V,D, {¬,∧,∨}〉, where

• n ∈ N and n ≥ 2

• T is a set consisting of the truth value degrees, such that T = {i/(n−1)|0 ≤ i ≤ n−1}, |T | = n

• V is the set of truth values, such that V = {(t, f)|t ∈ T , f ∈ T }, |V| = n2

• D ∈ V and is the set of designated values

The semantic functions that correspond to the connectives ∧, ∨ and ¬ are as follows:

f¬((t, f)) = (f, t)

f∨((t1, f1), (t2, f2)) = (max(t1, t2),min(f1, f2))

f∧((t1, f1), (t2, f2)) = (min(t1, t2),max(f1, f2))

When n = 2 the resulting logic simply corresponds to FDE. When n = 3 the resulting system
has 3 truth value degrees and 9 truth values. Its lattice is depicted in figure 3.

3I came across a sketch of this idea in [13]
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Figure 2: FDE lattice with truth value tuples

Figure 3: Lattice when T = 3
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Resulting is a logic of independent degrees of truth and falsity. Like ÃLℵ it has intermediate
degrees of truth, yet unlike ÃLℵ, in which truth and falsity are in diametrical opposition, the degree
of truth can be adjusted without affecting the degree of falsity and vice versa. Extending this logic
so that T = [0, 1] results in a fuzzy FDE. Remaining discussion will in general be based on this
case.

Following are several depictions of regions that constitute the lattice for this logic.

Figure 4: Well-Define Truth Values (t + f = 1)
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Figure 5: Under-Defined Truth Values (t + f < 1)

Figure 6: Over-Defined Truth Values (t + f > 1)
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Figure 7: More True than False (t > f)

Figure 8: More False than True (t < f)
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Figure 9: Designated Values

Semantic Consequence

An interpretation function v of this language, assigns to each proposition a truth value. v is
composed of two sub-functions, vt and vf . The former assigns the t portion of the truth value tuple
and the latter assigns the f portion of the truth value tuple.

In determining the designated values, (t, f), only the t portion is considered. Since fuzziness is
an aspect of this type of logic, a number δ can be defined which determines the designated values.
Taking the set of designated values, Dδ, to be {(t, f)|t ≥ δ} (depicted in figure 9), we can proceed
with a definition of logical consequence for a particular δ.

Σ ²δ A iif for all interpretations, v, if vt(B) ≥ δ for all B ∈ Σ, then vt(A) ≥ δ.

Abstracting from particular instances of ²δ, the general consequence relation is defined as
follows:

Σ ² A iff for all δ, where 0 ≤ δ ≤ 1, Σ ²δ A

An inference is valid if it preserves designated values. If Σ is a set of formulas, let vt[Σ] be
{vt(B)|B ∈ Σ}. The consequence relation is defined as:

Σ ² A iff for all v, Glb(vt[Σ]) ≤ vt(A)

Of course, as with the logic ÃLℵ, a special case of ÃL where D = {1}, the simplest option, and
that which I am interested in investigating further, is when D = {(1, f)|0 ≤ f ≤ 1}. This region
is indicated by the highlighted edge in figure 9. I shall refer to this type of logic as FDEn for any
given n and FDE∞ when T = [0,1].
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Implication

We now come to the task of thinking about implication in the context of FDE∞. A straightforward
though not so interesting possibility is the material implication, ⊃, such that A ⊃ B ≡ ¬A∨B. In
the context of fuzzy logic, such implications are called S-implications.4. This material implication
can be defined as follows:

f⊃((t1, f1), (t2, f2)) = (max(f1, t2),min(t1, f2))

Another simple option would be to mirror the ÃLukasiewicz conditional:

f→((t1, f1), (t2, f2)) = (min(1, 1− t1 + t2), 1−min(1, 1− t1 + t2))

More interesting conditionals can be found by taking into consideration more than just a com-
parison between the truth of the antecedent and truth of the consequent.

Conditional 1

One interesting notion of implication for a logic based on FDE is that of the logic BN4, which
extends FDE by defining an implication operator that gives the following truth table:

→ 1 b n 0
1 1 0 n 0
b 1 b n 0
n 1 n 1 n

0 1 1 1 1

Given this, a particularly interesting possibility is to define a conditional for FDE∞ such that

• when restricted to the well-defined values, (t, f), such that t, f ∈ [0, 1] and t + f = 1, gives
the ÃLukasiewicz implication operator.

• when restricted to the values 1(1, 0), b(1, 1), n(0, 0) and f(0, 1) gives the BN4 implication
operator.5

A function suitable for defining such a conditional, →1, is as follows:

f→1((t1, f1), (t2, f2)) = (min(t1 Ä t2, f2 Ä f1), t1 ∗ f2)

where x Ä y is defined as:

min(1, 1− x + y)

and x ∗ y is defined as:6

4Hájek, 2002.
5See http://consequently.org/news/2006/02/19/degrees of truth degrees of falsity/index.php
6This binary operator is known as the ÃLukasiewicz t-norm. See [9]
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max(0, x + y − 1)

The behaviour of this conditional can be seen as obeying the behaviour of the BN4 conditional
whilst at the same time being sensitive to the ÃLukasiewicz conditional and the degrees of truth and
falsity involved. A formal demonstration of this is given in Appendix A.

Of implication in BN4 Greg Restall writes

The value “true” is in the set a → b just when if a is at least “true” then b is at least
“true”, and if b is at least “false” then so is a. On the other hand, a conditional a → b
is at least “false” if a is at least “true” and b is at least “false”.7

Relating this quote to the definition of →1 I have given, let us begin by looking at the definition
for the t portion of the resulting truth value tuple. If either the truth of the antecedent is greater
than the truth of the consequent or the falsity of the consequent is greater than the falsity of the
antecedent, then the truth of the result is the difference between 1 and greater of these two falls.
Otherwise the value of t is 1. For the f portion, its value is as good as the truth of the antecedent
and the falsity of the consequent; the truer the antecedent and falser the consequent, the falser the
resulting truth value.

Here is an example demonstrating the application of this conditional to values which neither
lie on the four points of the diamond lattice nor the well-defined line, the result being a fuzzy
over-defined value.

v((0.9, 0.7) →1 (0.8, 0.9)) = (min(0.9 Ä 0.8, 0.9 Ä 0.7), 0.9 ∗ 0.9)
= (min(min(1, 1− 0.9 + 0.8),min(1, 1− 0.9 + 0.7)),max(0, 0.9 + 0.9− 1))
= (0.8, 0.8)

In going from antecedent to consequent, truth has been lost and falsity gained. Of this decrease
and increase, the increase of falsity is greater, and since this increase is 0.2, truth should corre-
spondingly be set to 0.8. Since the antecedent is 0.9 true and the consequent is 0.9 false, the degree
of falsity is 0.8.

Let BN4n denote the logic obtained by adding →1 to FDEn. It is clear that for any given n,
if Σ ²BN4n A, then ΣBN4 ² A. For no given n (apart from 2) is it the case that the converse holds.
For example, the formula A∨¬B ∨ (A → B) is valid in BN4 but not in BN43

8, hence not valid in
BN4n for any n > 3

The fusion operator of BN4 is defined as ¬(A → ¬B), giving the following truth table:

◦ 1 b n 0
1 1 1 n 0
b 1 b n 0
n n n 0 0
0 0 0 0 0

7Greg Restall, ‘Relevant and Substructural Logics’, in Dov Gabbay and John Wood (eds.). Handbook of the
History of Logic, Volume 7, Logic and the Modalities in the Twentieth Century, Elsevier, 2006, p. 53.

8e.g. v(A) = (0.5, 0), v(B) = (0.5, 0.5)
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Translating this to →1 gives the following definition:

f◦((t1, f1), (t2, f2)) = (t1 ∗ t2,min(t1 Ä f2, t2 Ä f1))

The fusion operator of BN4 is commutative and associative and is residuated by →. I have
verified that the first two of these properties hold for the fusion operator for BN4∞. I have not
verified that it is residuated by →1.

Here are two other possible definitions for a conditional.

Conditional 2

Another possibility for defining a conditional is to basically take the definition for the truth of →1

and its falsity as the negation of this:

f→2((t1, f1), (t2, f2)) = (min(t1 Ä t2, f2 Ä f1), 1−min(t1 Ä t2, f2 Ä f1))

The output of this conditional is obviously within the line of well-defined values and agrees with
the ÃLukasiewicz conditional for this range of truth values. Actually, when restricted to the four
truth values of FDE, it gives the semantics for an implication connective put forward by Smiley9.
The truth table for this implication connective is as follows:

→ 1 b n 0
1 1 0 0 0
b 1 1 0 0
n 1 0 1 0
0 1 1 1 1

Conditional 3

A final possibility for defining a conditional, which I am prompted to consider particularly for use
as a conditional for a fuzzy relevant logic I discuss in the last section of this paper, is as follows:

f→3((t1, f1), (t2, f2)) = (t1 Ä t2, t1 ∗ f2)

This third conditional agrees with the ÃLukasiewicz conditional, as when confined to the well-
defined truth values, t1 ∗ f2 = 1− (t1 Ä t2).

When restricted to the values 1 (1,0), b (1,1), n (0,0) and 0 (0,1), the truth conditions for this
connective and corresponding truth table are as follows:

v(A →3 B) = (1, f) iff (if v(A) = (1, f) then v(B) = (1, f)), [f ∈ {0, 1}]
v(A →3 B) = (t, 1) iff (v(A) = (1, f) and v(B) = (t, 1)), [t, f ∈ {0, 1}]

9See [1] and [18]
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→ 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 1 1 1
0 1 1 1 1

A conditional with this truth table has been suggested as the conditional for a formal framework
capturing situation semantics, something which will be discussed later on.

A brief comparison of the logics obtained by adding these three conditionals to FDE∞ is given
in Appendix B.

Quantification

The addition of universal and existential quantifiers to FDE∞ is straightforward, the basic idea
being to treat universal quantification as extended conjunction and existential quantification as
extended disjunction. Where D is the domain of quantification and Ax(d) the result of substituting
d for x

v(∀xA) = (t, f), where t = Glb({vt(Ax(d))|d ∈ D}), f = Lub({vf (Ax(d))|d ∈ D})
v(∃xA) = (t, f), where t = Lub({vt(Ax(d))|d ∈ D}), f = Glb({vf (Ax(d))|d ∈ D})

Following are two small examples

Q

a (0.5,0.8)
b (0.8,0)
c (0.3,0.7)

With respect to the above model, v(∀xQ(x)) = (0.3, 0.8) and v(∃xP (x)) = (0.8, 0)

P a b c
a (0.3,0.1) (0.9,0.5) (0.9,1)
b (0.7,0.6) (0.4,0.2) (1,0.9)
c (1,0.7) (0.5,0.2) (1,0.3)

With respect to the above model, v(∀x∀yP (x, y)) = (0.3, 1) and v(∃x∀yP (x, y)) = (0.5, 0.7),
v(∃x∃yP (x, y)) = (1, 0.1) and v(∀x∃yP (x, y)) = (0.9, 0.2)
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Applications

I shall now look at applying the central ideas of this paper and sketch some possible applications of
the type of formal system for which FDE∞ is a basis. Similar motivations in going from classical
logic to ÃL or FDE can be seen in going from ÃL or FDE to FDE∞.

Philosophical Issues

Fuzzy Self-Reference

A venerable argument for the existence of truth-value gluts is the so called Liar Paradox. There are
a number of paradoxes of the Liar family, the simplest example being the sentence ‘This sentence is
false’, which must be false if it is true, and true if it is false; in either case it is both true and false.
A standard way in which a logic can formally capture this fact whilst tolerating the contradictory
conjunction of the liar sentence and its negation is by providing a way to evaluate the conjunction
of a statement and its negation to a designated value. In doing so, the classical principle that
anything follows from contradictory premises is evaded. One way of achieving this in with a fuzzy
FDE is by assigning the liar sentence, p, the glutty truth value (1, 1), so that v(p ∧ ¬p) = (1, 1).
Another way is to set the value of δ to be 0.5 and assigning p the truth value (0.5, 0.5), so that
v(p ∧ ¬p) = (0.5, 0.5). Of course, the first strategy is inherited from FDE and the second strategy
is inherited from ÃL.

The availability of fuzzy over-defined truth values in fuzzy FDE provides a way to accommodate
‘fuzzy liars’, cases where liar sentences are given intermediate truth values between 0 and 1. Say, if
the sentence ‘This sentence is false’ is 0.75 true, then it is 0.75 false, and vice-versa. It seems that
the truth value of such a sentence might be suitably represented by the truth-value tuple (0.75,
0.75).

Fuzzy non-well-defined truth values seem applicable to other related examples, such as the fol-
lowing variation of Yablo’s Paradox10:

y1 for all k > 1, y is 1/1 untrue,
y2 for all k > 2, y is 1/2 untrue,
y3 for all k > 3, y is 1/3 untrue,

...

These cursory thoughts would benefit from a rigorous analysis.

Hybrid Sentences

Fuzzy FDE also provides a formal framework for the evaluation of compound sentences comprised
of sentences which have fuzzy truth values and sentences which have non-well-defined truth values.
For example, consider the following two sentences

1. The word ‘heterological’ is itself heterological

2. John is bald
10See [19]
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Heterological words do not apply to themselves. The word ‘short’ is short, so refers to itself
and is therefore not heterological (autological). The word ‘apple’ is not an apple, so it does not
refer to itself and it therefore is heterological. What of the word ‘heterological’? If it does not refer
to itself then it does, and if it does refer to itself then it does not. Sentence 1 is both true and
false so an appropriate truth value for it is (1,1). As for the second sentence, take John to be a
middle-aged man who has lost a significant amount of hair and is not thoroughly hirsute although
is not totally bald. Say the sentence asserting his baldness has the fuzzy truth value (0.6,0.4).
Given both an over-defined sentence and a well-defined yet fuzzy sentence such as these, within
a fuzzy FDE the simple compound sentence conjoining these two sentences has a truth value of
(min(1,0.6), max(1,0.4)), which equates to (0.6,1), a fuzzy-over-defined truth value.

Sorites Progressions Gaps

The sorites paradox is the name given to a class of paradoxical arguments related to gradual or
continuous change, which arise as a result of indeterminate application of the vague predicates
involved, vague predicates such as heap, bald and red.11 A classic formulation of the paradox
concludes that no amount of sand constitutes a heap. This is because (1) a single grain of sand
does not constitute a heap and (2) if n grains of sand do not make a heap, then n + 1 grains do
not make a heap. Therefore, by inductive reasoning, no number of grains of sand yields a heap. So
‘heap’ is a vague predicate.

One response to this paradox involves the employment of a fuzzy logic such as ÃL because of its
suitability for covering the existence of a relatively continuous change along a sorites progression
and the fact that a failure of modus ponens in ÃL given a suitable set of designated values invalidates
the sorites chain of reasoning.

Another suggestion is that vagueness requires us to reject a simple dichotomy between truth
and falsity. Just as a vague predicate divides objects into the positive extension, negative extension
and the penumbra, vague sentences can be divided into the true, the false and the indeterminate.
Adopting a suitable three-valued logic such as K3, one can have it so that there is some i, such
that Si is true and Si+1 is neither true nor false, therefore Si ⊃ Si+1 is not true. Thus in denying
some premises of the sorites argument, it fails.12

A not unexpected concern with this approach, of using a third truth value representing a truth-
value gap, is that the notion, in a sorites progression, of a sharp boundary between truth and
indeterminacy or indeterminacy and falsity is just as problematic as that between truth and falsity.

Within a fuzzy FDE framework, this issue of discreteness can be addressed whilst retaining an
appeal to truth-value gaps by using the continuous boundary between true and neither true nor
false and between neither true nor false and false. The relatively continuous change along a sorites
progression can be modeled with a sequence of truth values such as (1,0), (0.9,0), (0.8,0) ... (0,0)
... (0,0.8), (0,0.9), (0,1), illustrated in figure 10.

11Dominic Hyde, ‘Sorites Paradox’, The Stanford Encyclopedia of Philosophy (Fall 2005 Edition), Edward N. Zalta
(ed.), URL = <http://plato.stanford.edu/archives/fall2005/entries/sorites-paradox/>.

12Priest, 2001, p. 213.
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Figure 10: Progression of truth values in a gappy Sorites Paradox

Fuzzy Situation Semantics

Situation semantics is an approach to natural language semantics which is based on the idea that
“sentences stand for facts or something like them”13. The project was initiated by the work of
Barwise and Perry.14

In situation semantics, states of affairs, or infons as they are known in technical parlance, are
complexes of properties and objects which are used to represent facts. Situations are limited parts
or aspects of reality, which determine whether or not a state of affairs is supported. Consider the
question of whether or not a footballer sustained an injury at a certain time T . There are two
possible states of affairs, that they did or did not. The situation at T , on the field where the
footballer was at the time, determines which of these states of affairs is the case.15

Situation theory, the formal theory that underlies situation semantics, formalises the nature of
the supports relation. Information is always taken to be information about some situation and is
built up from discrete informational items, the infons mentioned earlier. Infons are of the form

〈〈R, a1, ...., an, 1〉〉, 〈〈R, a1, ..., an, 0〉〉

Infons are used to carry the information conveyed by a statement. They are not things that in
themselves are true or false. Rather, infons may be true or false with regard to a certain situation.
Given a situation, s, and an infon δ, we write

s ² δ

13John R. Perry. (1998). ‘Semantics, situation’. In E. Craig (Ed.), Routledge Encyclopedia of Philosophy. London:
Routledge. Retrieved May 28, 2006, from http://www.rep.routledge.com/article/U041SECT2

14See [2]
15Perry, 1998.
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to indicate that the infon δ is made factual, or is supported, by the situation s. Thus,

s ² 〈〈R, a1, ..., an, 1〉〉

means that, in situation s, the objects a1...an stand in the relation R, and

s ² 〈〈R, a1, ..., an, 0〉〉

means that in situation s, the objects a1...an do not stand in the relation R.16

To illustrate, consider a simple situation; the events on the football field mentioned above. The
bits of information constituting the state of affairs in question are the footballer, the property of
sustaining the injury and the time.

There are two possibilities or ‘states of affairs’, corresponding to whether the footballer injured
themselves or not, which can be represented as:

σ : 〈〈 sustains injury, t, footballer, 1 〉〉

and

σ′ : 〈〈 sustains injury, t, footballer, 0 〉〉

Let s be the situation on the football field. Then,

s ² σ

that is, s supports σ, or s makes it the case that σ.
Infons may be combined, recursively, using the operations of conjunction, disjunction, and

situation-bounded existential and universal quantification to form compound infons.

Juan Barba Escriba has presented a formal system intended to capture some of the basic features
of situation semantics, the details of which I shall not go into here.17 Suffice it to say, the system
includes formal counterparts of situations, including partial and incoherent ones, so that an infon
can be supported and rejected simultaneously by the same situation. This naturally results in a
quantified four valued logic, with the truth values ‘true’, ‘false’, ‘true and false’ and ‘undefined’.
He defines several connectives, including ¬, ∧ and →. This fragment of the language is actually
FDE + →3.

Given this and the notion of a fuzzy FDE outlined in this paper, a natural step is to use these
ideas to develop a formal system for a fuzzy situation semantics. Particularly in more complex
situations, where the determination of a state of affairs by a situation is not epistemically clear-cut,
this would be the way to go.

A suitable representation for the corresponding support relation is ²δ, where δ ∈ [0, 1], so that
16Keith Devlin, ‘Situation Theory and Situation Semantics’, accessed at http://www.stanford.edu/ kde-

vlin/HHL SituationTheory.pdf
17Juan Barba Escriba, ‘Two Formal Systems for Situation Semantics’, Notre Dame Journal of Formal Logic, Vol.

33(1), 1992, pp. 70-88.
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σ ²δ 〈〈R, a1, ...., an, 1〉〉

means that in situation s, the objects a1...an stand in the relation R by degree δ and

σ ²δ 〈〈R, a1, ...., an, 0〉〉

means that in situation s, the objects a1...an does not stand in the relation R by degree δ.

Evidence Logic

In seeking a logic for the provision of a knowledge representation framework, it is natural to
look beyond the limitations of classical logic. Whereas an agent’s knowledge of the real world is
gradational, classical logic is absolute; Whereas an agent’s knowledge of the real world is both
confirmatory and refutatorily evidential, classical logic is simply confirmatory. Furthermore, since
intermediate levels of conflict between confirmatory and refutatory evidence often arise, a reasonable
paraconsistent framework for the processing of such conflict is desirable.18

Evidence Logic19 accommodates this epistemic imperfection, providing a framework for the
representation of both confirmatory and refutatory predication, with levels of evidential support.
Precisely, for each n > 1 the Evidence Logic ELn is defined as follows. Let

En = {i/(n− 1) : i = 1, ..., n− 1}
be the Evidence Space of size n− 1. The evidence spaces En are used in Evidence Logic to provide
measures of ‘evidence levels’. In general, in applications, n shall have to be chosen sufficiently large
to handle the grades of evidence, whilst a practical bound to n will be dictated by the situation.
For each s-ary predicate symbol P , and for any terms t1, ..., ts and any e in En, ELn contains
atomic formulas

Pc(t1, ..., ts) : e and Pr(t1, ..., ts) : e

where the former asserts that there is evidence at level e confirming P (t1, ..., ts) while the latter
asserts evidence at level e refuting P (t1, ..., ts).20.

The similarities between the ideas of Evidence Logic and FDEn are evident. The Evidence
Space of ELn+1 corresponds in size to the set T in the logic FDEn. The Evidence Logic formulas
Pc(t1, ..., ts) : e and Pr(t1, ..., ts) : er, can be translated to the FDEn valuation v(P (t1, ..., ts)) =
(ec, er). Formalisation and study of Evidence Logic concepts from an FDEn perspective might be
worthwhile. For an overview of work on Evidence Logic, consult [7].

18Don Faust. ‘Between Consistency and Paraconsistency: Perspectives from Evidence Logic’, in Carinielli, Walter
A. Cogniglio, Marcelo E. and Itala M. Loffredo D’Ottaviano (eds)., Paraconsistency the logical way to the inconsistent,
New York, Marcel Dekker, 2002, p. 501.

19See [7]
20Faust, p. 501.
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Computing

Both fuzzy logic and bilattices such as FDE have been suggested or implemented as information
processing frameworks.

Fuzzy computing, that is, the use of fuzzy logic as a logic for information processing systems
has gained widespread use. Employment of fuzzy logic is one of the techniques of soft-computing,
the use of “computational methods tolerant to suboptimality and impreciseness (vagueness) and
giving quick, simple and sufficiently good solutions”.21 Other computing applications of fuzzy logic
were discussed earlier.

In some seminal papers22, Nuel Belnap suggested FDE be used as a basis for computer pro-
gramming semantics, since it allows for an elegant dealing of missing or conflicting information. He
remarks

what is the computer to do [with inconsistent information]? If it is a classical two-valued
logician, it must give up altogether talking about anything to anybody or, equivalently,
it must say everything to everybody. ... [In cases where] there is a possibility of
inconsistency, we want to set things up so that the computer can continue reasoning in
a sensible manner even if there is such an inconsistency, discovered or not.23

Belnap outlines an information processing system which when given information asserting an
item marks that item with a ‘told True’ and when given information denying an item marks that
item with a ‘told False’. Each item in the database will therefore be marked in one of the following
ways:24

1. just the “told True” sign, indicating that that item has been asserted to the computer without
ever having been denied (T )

2. just the value “told False”, which indicates that the item has been denied but never asserted
(F )

3. No “told” values at all, which means the computer is in ignorance, has been told nothing
(None)

4. The interesting case: the item might be marked with both “told True” and “told False”
(Both)

In Belnap’s simple example, after one person enters information concerning the results of a
baseball game into the system it looks something like this:

〈 Pirates, 1971 〉 True

〈 Orioles, 1971 〉 False
21Hájek, 2002
22See [3] and [4]
23Nuel Belnap, ’A Useful Four-Valued Logic’, in J. Michael Dunn and George Epstein (eds.), Modern Uses of

Multiple-Valued Logic, Dordrecht 1977, p. 9.
24Ibid., p. 11.
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Subsequently another person feeds the system incorrect information, after which the first entry
looks something like this:

〈Pirates, 1971〉 True, False

In such an application, the four values are “unabashedly epistemic”25, used to represent the
system’s evaluation of a state of affairs.

Given the promise of both of these computing paradigms, an obvious move is to combine the two
for an information processing system that is both sensitive to degrees of information and missing
or conflicting information. I will briefly outline a few ideas.

In an epistemic context, the four values of FDE can be considered as evaluating two aspects of
a state of affairs related to a database:

1. whether there is positive information about the truth of this state of affairs (1, f) or not (0, f)

2. whether there is positive information about the falsity of this state of affairs (t, 1) or not (t, 0)

Translating this to fuzzy FDE, the range of truth values can be considered as evaluating:

1. the degree to which there is positive information about the truth of this state of affairs

2. the degree to which there is positive information about the falsity of this state of affairs

Belnap suggests something like this in passing:

My penultimate observation concerns the suggestion that the computer keep more in-
formation than I have allowed it to keep. Perhaps it should count the number of times
it has been told True or told False ... [but] it is by no means self-evident how this extra
information is to be utilised in answering question, in inference, and in the input of
complex sentences.26

One suitable option to address this observation would be the employment of something like the
evidence logic described in the previous section, where each inputted assertion of an item adds a
degree of positive information about its truth and each inputted denial of the item adds a degree
of positive information about its falsity.

Another possibility is to have a system which accepts well-defined, yet fuzzy inputs. For exam-
ple, one person could assert an item with degree of truth 0.7 and another person could assert an
item with degree of truth 0.2, resulting in the item being marked with a value of (0.7,0.8); each
item of input the system receives is well-defined yet fuzzy and the aggregate of input it receives
might be inconsistent. If it is to tolerate and accurately represent the inconsistent data it holds, it
will need to use fuzzy non-well-defined values.

25Nuel Belnap, ‘How a computer should think’, in G.Ryle, Contemporary Aspects of Philosophy, London, 1975, p.
43.

26Ibid., p. 49.
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Finally, fuzzy non-well-defined truth values can be used for output in an inconsistency tolerant
question answering system.

Take a database consisting of the following consistent information:

shorter(tom, dick).
shorter(tom, harry).
shorter(dick, harry).
taller(dick, tom).
taller(harry, tom).
taller(harry, dick.

A simple program could be written which calculates a truth value, (t, f), for each question of the
form short(x)? and each question of the form tall(x)? (¬ short(x)? ), where t, f ∈ {i/(n − 1)|0 ≤
i ≤ n − 1} and n is the number of domain elements (in this case 3). Furthermore, the program
works towards uniquely pairing each instance of the statement short(x) with one of the truth values
and uniquely pairing each instance of the statement tall(x) with one of the truth values.

Following is some pseudocode for such a program:

for each member of the domain
set shortness of member to 0

for each member of the domain
set tallness of member to 0

for i = 0 to i = number of domain elements
add i/(n-1) to the set of truth degree values

set increment value to lowest truth degree value that is not 0

for each item of information in the database of the form shorter(x,y)
add increment value to shortness of x

for each item of information in the database of the form taller(x,y)
add increment value to tallness of x

The output of such a program given this database can be summed up in the following table:

shortness tallness
tom (1, 0) (0, 1)
dick (0.5, 0.5) (0.5, 0.5)
harry (0, 1) (1, 0)

If however, the database contained inconsistent information, so that say, taller(dick, tom) was
replaced by taller(tom, dick), not every statement of the form short(x) or tall(x) will be assigned a
well-defined truth value. The output of this program in such a case would look something like this:
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shortness tallness
tom (1, 0) (0.5, 1)
dick (0.5, 0.5) (0, 0.5)
harry (0, 1) (1, 0)

Of course, this program is just a cursory example and a practicable application of this idea
would require a much more sophisticated program.

An implication connective and consequence relation for such applications is something which
remains to be looked into. Belnap discusses these two aspects and remarks that

the inference from A to B is valid, or A entails B, if the inference never leads us from
the True to the absence of the True (preserves Truth), and also never leads us from the
absence of the False to the False (preserves non-Falsity).27

This consideration suggests that →1 or more simply yet adequately, →2 are suitable. It also
suggests the possibility of considering a consequence relation which differs to that I described
earlier.28

Fuzzy Relevant Logic

Before closing, I would like to look at the idea of constructing a fuzzy relevant logic based on
FDE∞.29 FDE is used as a basis for relevant logics and as this paper has shown, the relational
semantics for FDE can be fuzzified, resulting in a fuzzy logic with independent degrees of truth
and falsity. Given this, we have a strategy for constructing a logic that is both fuzzy and relevant,
by combining FDE∞ with a relevant logic based on relational semantics. I will outline this idea
using the basic relevant logic N4.30

The logic N4 is a structure 〈W,N, v〉, where W is a set of worlds, N ⊆ W is the set of normal
worlds and v is a function31 which does two things. Firstly it assigns a truth value tuple (t, f),
where t, f ∈ {0, 1} to each pair comprising a world, w ∈ W , and a proposition, p. This is written
as vw(p) = (t, f). Secondly, for every non-normal world, w ∈ W −N , v assigns a truth value tuple
(t, f) to formulas of the form A → B.

The truth and falsity conditions for the extensional connectives, ∧, ∨ and ¬ are the same as
those for FDE, although relativised to each world. The truth and falsity conditions for → are:

vw(A → B) = (1, f) iff for all w′ ∈ W such that v′w(A) = (1, f), v′w(B) = (1, f). [f ∈ {0, 1}]
27Belnap, 1975, p.43
28This is something that did not come to my mind, though it might technically not make a difference. Belnap

writes “I note that Dunn 1975 has shown that it suffices to mention truth-preservation, since if some inference form
fails to always preserve non-Falsity, then it can be shown by a technical argument that it also fails to preserve Truth”.
See [3], p. 43. What exactly this means I have not as yet looked into.

29Graham Priest outlines strategies for constructing fuzzy relevant logics in [14] and [16]. The approach I outline
differs in that the set of fuzzy values extends beyond the set of well-defined fuzzy values. Whether this provides an
advantage for intended applications is an open matter.

30See [14], Chapter 9
31Comprised of subfunctions vt and vf like in section 3
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vw(A → B) = (t, 1) iff for some w′ ∈ W such that v′w(A) = (1, f), v′w(B) = (t, 1). [t, f ∈
{0, 1}]

Combining this basic relevant logic with FDE∞ results in a new type of fuzzy relevant logic,
which I will here refer to as N∞. The conditions for ∧, ∨ and ¬ in this logic are the same as those
for FDE∞. For the truth and falsity conditions for →, I refer back to the conditional operator →3

I defined in section 4.

vw(A → B) = (t, f), where t = Glb({vtw′ (A →3 B)|w′ ∈ W}) and f = Lub({vfw′ (A →3

B)|w′ ∈ W})

The consequence relation of this logic is defined as follows:

Σ ² A iff for every interpretation, 〈W,N, v〉, and all w ∈ W , Glb(vt[Σ]) ≤ vt(A)32

Since every N4-interpretation is a N∞-interpretation where every formula takes the value
(1, 0), (1, 1), (0, 0) or (0, 1), N∞ is a sub-logic of N4: if Σ ²N∞ A then Σ ²N4 A. Hence N∞ is
a relevant logic.33

Conclusion

This paper has outlined a merging of the ideas inherent in fuzzy logic and first degree entailment.
The range of subtopics and issues covered can no doubt be further investigated. Looking further
into the merits and suitability of the three conditionals I defined as well as comparing the logics
they generate is one place to start. I discussed a few ways in which the under-defined and over-
defined values of this type of logic as well as the connectives can be used to deal with certain
fuzzified philosophical problems involving truth-value gluts/gaps. There might be richer examples
of paradoxes combining fuzzy concepts such as vagueness with glutty or gappy concepts like self-
reference which would contribute to proving the worth of the ideas in this paper. The worth of
these ideas is manifest with regard to their application to information processing tasks and agent
programming, however work on formalising this application remains to be done. Finally, there
remains a range of meta-theoretical properties to investigate. Two of the most prominent are the
development of proof systems for the logics I have discussed, in particular BN4∞ and a systematic
examination of the relationships between the members of the BN4n family of logics.

32vt[Σ] is explained in section 3
33relevant iff whenever A → B is logically valid, A and B have a propositional parameter in common. See [14],

Chapter 9.
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Appendix A

Verification that →1 gives the BN4 conditional:

f→1((1, 0), (1, 0)) = (min(min(1, 1− 1 + 1),min(1, 1− 0 + 0)),max(0, 1 + 0− 1)) = (1, 0) [1]
f→1((1, 0), (1, 1)) = (min(min(1, 1− 1 + 1),min(1, 1− 1 + 0)),max(0, 1 + 1− 1)) = (1, 0) [0]
f→1((1, 0), (0, 0)) = (min(min(1, 1− 1 + 0),min(1, 1− 0 + 0)),max(0, 1 + 0− 1)) = (0, 1) [n]
f→1((1, 0), (0, 1)) = (min(min(1, 1− 1 + 0),min(1, 1− 1 + 0)),max(0, 1 + 1− 1)) = (0, 0) [0]
f→1((1, 1), (1, 0)) = (min(min(1, 1− 1 + 1),min(1, 1− 0 + 1)),max(0, 1 + 0− 1)) = (0, 1) [1]
f→1((1, 1), (1, 1)) = (min(min(1, 1− 1 + 1),min(1, 1− 1 + 1)),max(0, 1 + 1− 1)) = (1, 0) [b]
f→1((1, 1), (0, 0)) = (min(min(1, 1− 1 + 0),min(1, 1− 0 + 1)),max(0, 1 + 0− 1)) = (1, 1) [n]
f→1((1, 1), (0, 1)) = (min(min(1, 1− 1 + 0),min(1, 1− 1 + 1)),max(0, 1 + 1− 1)) = (0, 0) [0]
f→1((0, 0), (1, 0)) = (min(min(1, 1− 0 + 1),min(1, 1− 0 + 0)),max(0, 0 + 0− 1)) = (0, 1) [1]
f→1((0, 0), (1, 1)) = (min(min(1, 1− 0 + 1),min(1, 1− 1 + 0)),max(0, 0 + 1− 1)) = (0, 0) [n]
f→1((0, 0), (0, 0)) = (min(min(1, 1− 0 + 0),min(1, 1− 0 + 0)),max(0, 0 + 0− 1)) = (1, 0) [1]
f→1((0, 0), (0, 1)) = (min(min(1, 1− 0 + 0),min(1, 1− 1 + 0)),max(0, 0 + 1− 1)) = (0, 0) [n]
f→1((0, 1), (1, 0)) = (min(min(1, 1− 0 + 1),min(1, 1− 0 + 1)),max(0, 0 + 0− 1)) = (1, 0) [1]
f→1((0, 1), (1, 1)) = (min(min(1, 1− 0 + 1),min(1, 1− 1 + 1)),max(0, 0 + 1− 1)) = (1, 0) [1]
f→1((0, 1), (0, 0)) = (min(min(1, 1− 0 + 0),min(1, 1− 0 + 1)),max(0, 0 + 0− 1)) = (1, 0) [1]
f→1((0, 1), (0, 1)) = (min(min(1, 1− 0 + 0),min(1, 1− 1 + 1)),max(0, 0 + 1− 1)) = (1, 0) [1]

Proof that →1 gives the ÃLukasiewicz conditional:

Recall that as an operation on truth value tuples, Ä can be defined as:

f→((t1, f1), (t2, f2)) = (t1 Ä t2, 1− t1 Ä t2)

and →1 can be defined as

f→((t1, f1), (t2, f2)) = (min(t1 Ä t2, f2 Ä f1), t1 ∗ f2)

so, when confined to truth values (t, f), where t, f ∈ [0, 1] and t + f = 1, it should be the case that

1. min(t1 Ä t2, f2 Ä f1) = t1 Ä t2

and

2. t1 ∗ f2 = 1− t1 Ä t2

Proof of 1 :
min(t1 Ä t2, f2 Ä f1) = t1 Ä t2
⇒ min(min(1, 1− t1 + t2),min(1, 1− f2 + f1)) = min(1, 1− t1 + t2)
f1 = 1− t1 and f2 = 1− t2
⇒ min(min(1, 1− t1 + t2),min(1, 1− (1− t2) + (1− t1))) = min(1, 1− t1 + t2)
⇒ min(min(1, 1− t1 + t2),min(1, 1− t2 + t1)) = min(1, 1− t1 + t2)
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⇒ min(min(1, 1− t1 + t2),min(1, 1− t1 + t2)) = min(1, 1− t1 + t2)
⇒ min(1, 1− t1 + t2) = min(1, 1− f2 + f1)
⇒ 1− t1 + t2 = 1− f2 + f1

⇒ 1− t1 + t2 + f2 = 1 + f1

⇒ 1− t1 + 1 = 1 + f1

⇒ 2− t1 = 1 + f1

⇒ 1 = t1 + f1

⇒ 1 = 1
∴ min(t1 Ä t2, f2 Ä f1) = t1 Ä t2

Proof of 2 :
t1 ∗ v(f2) = 1− t1 Ä t2
⇒ max(0, t1 + f2 − 1) = 1−min(1, 1− t1 + t2)
⇒ max(0, t1 + f2 − 1) + min(1, 1− t1 + t2) = 1
f2 = 1− t2
⇒ max(0, t1 + (1− t2)− 1) + min(1, 1− t1 + t2) = 1
⇒ max(0, t1 − t2) + min(1, 1− t1 + t2) = 1
if t2 > t1 then t1 − t2 < 0 and 1− t1 + t2 > 1 so
max(0, t1 − t2) + min(1, 1− t1 + t2) = 0 + 1 = 1
if t2 <= t1 then max(0, t1 − t2) = t1 − t2 and min(1, 1− t1 + t2) = 1− t1 + t2 so
⇒ t1 − t2 + 1− t1 + t2 = 1
⇒ 1 = 1
∴ t1 ∗ f2 = 1− t1 Ä t2
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Appendix B

Let FDE∞ + →n denote the logic resulting from adding one of the 3 conditionals to FDE∞. It
can be seen that for no x, y ∈ {1, 2, 3}, x 6= y does the following hold: if Σ ²FDE∞+→x A then
Σ ²FDE∞+→y A

→1 →2 →3

(1) q ² p → q × × √
(2) ¬p ² p → q × × ×
(3) (p ∧ q) → r ² (p → r) ∨ (q → r)

√ √ √
(4) ¬(p → p) ² q × √ ×
(5) ¬(p → q) ² p

√ × √
(6) p → r ² (p ∧ q) → r

√ √ √
(7) p → q, q → r ² p → r

√ √ √
(8) p → q ² ¬q → ¬p

√ √ ×
(9) ² p → (q ∨ ¬q) × × ×
(10) ² (p ∧ ¬p) → q × × ×
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[9] Hájek, Petr, Metamathematics of Fuzzy Logic, Dordrecht, Kluwer Academic Publishers, 1998.
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