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Abstract

In this paper I look at informational independence in the context of quantified modal logic. Firstly, I
define an independence-friendly (IF) constant domain quantified modal logic and to an extent investigate
its expressive power relative to standard constant domain quantified modal logic. Secondly, I extend this
investigation to variable domain quantified modal logic, where things become more interesting. I am
interested in confining investigation to those independence relations particular to quantified modal logic,
so the IF quantified modal logics investigated augment standard quantified constant domain modal logic
by only allowing ∃ quantifiers to be marked as independent from ¤ operators and ♦ operators to be
marked as independent from ∀ quantifiers. I then discuss some applications/motivations of informational
independence in an intensional context. I will use the subscripted equivalence sign ≡t to indicate truth
equivalence; A ≡t B means that A is true iff B is true.

keywords: game-theoretical semantics, independence-friendly logic, first-order modal logic, quanti-
fied modal logic

1 Constant Domain Quantified Modal Logic

Let CK denote the constant domain quantified modal logic corresponding to the propositional modal
logic K 1. The syntax of CK augments the language of first-order logic with the operators ¤ and ♦. An
interpretation for the language is a quadruple 〈D, W,R, v〉, where:

• W is a set of worlds

• R is a binary accessibility relation on W

• D is the non-empty domain of quantification

• v assigns each constant, c, of the language a member, v(c), of D and each pair comprising a world,
w, and an n-place predicate, P , a member of the truth value set {0, 1}

The truth conditions for the connectives and modal operators are as in the propositional case. The
truth conditions for the quantifiers are as in first-order logic. Thus, for every world, w:

• vw((∀x)A) = 1 iff for all d ∈ D, vw(Ax(fd)) = 1 (otherwise it is 0)

• vw((∃x)A) = 1 iff for some d ∈ D, vw(Ax(fd)) = 1 (otherwise it is 0)

Let IFCK denote the language of independence-friendly CK and ϕ be a formula of ordinary CK in
negation normal form. A formula of IFCK is obtained as follows.

Firstly, we index each of the modal operators in ϕ with a number. It is important to note that we are
not dealing with a multiply modal logic; the index numbers are merely used for identification purposes.
We define a numbering function, MI(ϕ, n), where n ∈ N. Starting with n = 1, we inductively employ
MI to index each of the modal operators of a given CK formula in preparation for its usage as an IFCK
formula. MI is defined as follows:

1K is the basic modal logic characterised by the axiom ¤(A → B) → (¤A → ¤B). The following formulation can be found
in [5]
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MI(p, n) = p
MI(¬p, n) = ¬p
MI(ϕ ∧ φ, n) = MI(ϕ, n) ∧MI(φ, n)
MI(ϕ ∨ φ, n) = MI(ϕ, n) ∨MI(φ, n)
MI(¤ϕ, n) = ¤nMI(ϕ, n + 1)
MI(♦ϕ, n) = ♦nMI(ϕ, n + 1)
MI((∀x)ϕ, n) = (∀x)MI(ϕ, n)
MI((∃x)ϕ, n) = (∃x)MI(ϕ, n)

Two examples of such application of MI:

• ¤♦¤(∃x)P (x) becomes ¤1♦2¤3(∃x)P (x)

• (∀x)¤(♦¤P (x) ∧ ♦(∃y)F (x, y)) becomes (∀x)¤1(♦2¤3P (x) ∧ ♦2(∃y)F (x, y))

Given an indexed formula, a formula of IFCK is obtained by any number of the following two steps:

• If a ♦ occurs in ϕ within the scope of a number of universal quantifiers which include (∀x1), (∀x2), ...,
it may be replaced by ♦/{x1,x2,...}.

• If an existential quantifier (∃y) occurs within ϕ, it may be replaced by (∃y/{n,m,...}), where n,m, ...
are numbers used to index instances of the ¤ operator which (∃y) is within the scope of.

The following formulas are members of IFCK:

¤1(∃x/{1})P (x), (∀x)♦1/{x}♦2P (x), (∀x)(∀y)♦1/{x,y}P (x, y) and (∀x)(♦1/{x}P (x) ∧ ♦2/{x}Q(x))

By contrast, the following formulas are not members of IFCK

¤1(∀x/{1})P (x), (∃x)♦1/{x}♦2P (x), (∀x)(∀y)¤1/{x,y}P (x, y) and ¤1(¤2(∃x)P (x) ∨ (∃y/{2})F (y))

2 Semantics

The semantics for this logic can basically be obtained by translating IF quantified modal logic formulas into
independence-friendly first-order logic IF-FOL formulas and then using the standard semantics for IF-
FOL. Note: The semantics are straightforward to those with a basic understanding of IF logic
and GTS. I am still working on a clear way to present the semantics in a game-theoretical way.

I here define a procedure to translate CK into FOL, to be used in subsequent sections. This translation
is an extension of the well-known standard translation2 from propositional modal logic into first-order logic.
Although there is no ‘standard’ translation procedure as such for quantified modal logic, the translation
function will be denoted by ST . My approach will be to use a two-sorted first-order logic; one sort for
worlds and one sort for individuals. Of course, we can easily translate these two-sorted first-order logic
formulas into one-sorted ones. The two-sorted first-order language under consideration here is defined
as follows. It is assumed that a countably infinite set of first-order variables for worlds and a countably
infinite set of first-order variables for individuals are given. The sets are assumed to be disjoint. In the
following definition, the metavariables wn range over first-order variables for worlds and the metavariable
x ranges over first-order variables for individuals. The standard translation STwn , where wn is a constant
representing the current world, is defined as follows:

2[1]
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STwn(P (x1, ..., xn)) = P (x1, ..., xn, wn)
STwn(¬ϕ) = ¬STwn(ϕ)
STwn(ϕ ∧ φ) = STwn(ϕ) ∧ STwn(φ)
STwn(ϕ ∨ φ) = STwn(ϕ) ∨ STwn(φ)
STwn(♦ϕ) = (∃wn+1)(R(wn, wn+1) ∧ STwn+1(ϕ))
STwn(¤ϕ) = (∀wn+1)(R(wn, wn+1) → STwn+1(ϕ))
STwn((∃x)ϕ) = (∃x)STwn(ϕ)
STwn((∀x)ϕ) = (∀x)STwn(ϕ)

Note that the definition of STwn+1 is obtained by exchanging wn+1 for wn. Also, a propositional atom
p is considered a zero-place predicate, so STwn(p) = P (wn).

To state formally that the translation given above is truth-preserving with respect to constant domain
semantics, it is noted that a constant domain model for first-order modal logic can be considered as a
model for two-sorted first-order logic and vice versa.

Definition Given a CK model M = 〈D,W,R, v〉 for first-order modal logic, a model M∗ = 〈D∗,W ∗, v∗〉
for two-sorted first-order logic is defined by letting

• v∗(R) = R

• v∗P ((d1, ..., dn, w)) = 1 iff vwP (d1, ..., dn) = 1

• D = D∗

• W = W ∗

This translation procedure is truth-preserving: M, w |= ϕ iff M∗ |= STw(ϕ).3 Thus, first-order modal
logic, considered as a language for talking about constant domain models, has the same expressive power
as the fragment of two-sorted first-order logic obtained by taking the image of first-order modal logic under
the translation STw.

This translation procedure can be simply adjusted to give a translation of IFCK into IF-FOL. The
translation STwn defined above be extended with the following:

STwn(♦/{x1,...,xn}ϕ) = (∃wn+1/{x1,...,xn})(R(wn, wn+1) ∧ STwn+1(ϕ))
STwn((∃x/{1,...,m})ϕ) = (∃x/{w1,...,wm})STwn(ϕ)

3 Some Observations on the Expressive Power of IFCK

Fact 3.1 The IFCK formulas (∀x)♦1/{x}P (x) and ¤1(∃x/{1})P (x) can be translated into equivalent CK
formulas:

(∀x)♦1/{x}P (x) ≡t ♦(∀x)P (x) and ¤1(∃x/{1})P (x) ≡t (∃x)¤P (x)

Proof These equivalences are straightforward. Here is a demonstration of the latter equivalence via
translation of each formula to a FOL formula. Let φ1 = (∃x)¤P (x) and φ2 = ¤1(∃x/{1})P (x)

STw0(φ1) = (∃x)STw0(¤P (x)) STw0(φ2) = (∀w1)(R(w0, w1) → STw1((∃x/{w1})P (x)))

= (∃x)(∀w1)(R(w0, w1) → STw1(P (x))) = (∀w1)(R(w0, w1) → (∃x/{w1})STw1(P (x)))

= (∃x)(∀w1)(R(w0, w1) → P (x,w1)) = (∀w1)(R(w0, w1) → (∃x/{w1})P (x,w1))

= (∃x)(∀w1)(R(w0, w1) → P (x,w1))

∴ STw0(φ1) = STw0(φ2) ¥
3More on this formal statement can be found in the First-Order Modal Logic chapter of the recently released Handbook of

Modal Logic, published by Elsevier in 2006
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Fact 3.2 The IFCK formulas (∀x)¤1♦2/{x}P (x) and ¤1(∀x)(∃y/{1})P (x, y) can be translated into equiv-
alent CK formulas:

(∀x)¤1♦2/{x}P (x) ≡t ¤♦(∀x)P (x) and ¤1(∀x)(∃y/{1})P (x, y) ≡t (∀x)(∃y)¤P (x, y)

Proof This relies on the fact that in CK (∀x)¤A ≡ ¤(∀x)A, so we can syntactically swap the (∀x)
and ¤. Here is a demonstration of the latter equivalence. Let φ1 = (∀x)(∃y)¤1P (x, y) and φ2 =
¤1(∀x)(∃y/{1})P (x, y).

STw0(φ1) = (∀x)STw0((∃y)¤1P (x, y)) STw0(φ2) = (∀w1)(R(w0, w1) → STw1((∀x)(∃y/w1)P (x, y)))
= (∀x)(∃y)STw0(¤1P (x, y)) = (∀w1)(R(w0, w1) → (∀x)STw1((∃y/w1)P (x, y)))
= (∀x)(∃y)(∀w1)(R(w0, w1) → STw1(P (x, y))) = (∀w1)(R(w0, w1) → (∀x)(∃y/w1)STw1(P (x, y)))
= (∀x)(∃y)(∀w1)(R(w0, w1) → P (x, y, w1)) = (∀w1)(R(w0, w1) → (∀x)(∃y/w1)P (x, y, w1))

= (∀w1)(∀x)(∃y/w1)(R(w0, w1) → P (x, y, w1))
= (∃y)(∀w1)(∀x)(R(w0, w1) → P (x, y, w1))

∴ STw0(φ1) = STw0(φ2) ¥

Fact 3.3 The IFCK formula ¤1¤2(∃x/{2})(∃y/{1})P (x, y) can be translated into an equivalent CK for-
mula.

Proof This formula can be considered as an analogue of the basic genuine IF-FOL prefix (∀x)(∀y)(∃z/{y})(∃u/{x}).
Firstly, ¤1¤2(∃x/{2})(∃y/{1})P (x, y) can straightforwardly be translated to

¤1(∃x)¤2(∃y/{1})P (x, y) (3.1)

Secondly, we can eliminate the remaining slash to get:

¤1(∃x)¤2(∃y)P (x, y) (3.2)

This second move, of simply removing the slash which indicates that (∀x) is independent of ¤1 requires
justification. To see why we can do this, consider the formula:

ϕ = ¤1¤2(∃x/{1})P (x)

For a model M and world w0, the game GA(ϕ,M, w0) will be such that all histories at which Verifier
is to make a selection for (∃x/{1}) will have a world sequence of the form:

(w0, wi, wj)

where j, k ∈ N. Now, all histories h1 and h2 such that h1 ∼V h2 will be of the form (w0, wx, wn),
where x, n ∈ N, x is a variable relative to the histories and n is a constant relative to the histories, so
that w0 and wn are worlds common to both histories and wx is not common to both histories. For Verifier
to have a winning and uniform strategy, it must be the case that fV(h1) = fV(h2). Now, since both of
these histories in the same information partition end at the same world, it trivially follows that if both
histories are winning then the same selection for (∃x/{1}) can be made. This exemplifies the fact that,
as pointed out by Tero Tulenheimo, modal logic is transitional; each transition made when evaluating a
modal operator is guarded by an accessibility relation and depends only on where the previous transition
led. Hence, the semantics of IFCK precludes the possibility of having the effect of the Henkin quantifier
in this case, where two ¤ operators replace the two (∀) quantifiers. ¥
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Fact 3.4 The IFCK formula (∀x)(∀y)♦1/{y}♦2/{x}P (x, y) can be translated into an equivalent CK for-
mula [Note: This fact might be incorrect I think. I need to think about the proof more].

Proof This is the other basic IFCK analogue of the Henkin Quantifier. Firstly, (∀x)(∀y)♦1/{y}♦2/{x}P (x, y)
can be straightforwardly translated to:

(∀x)♦1(∀y)♦2/{x}P (x, y) (3.3)

Let ϕ stand for this formula. Translating this formula to IF-FOL, we get:

STw0(ϕ) = (∀x)STw0(♦1(∀y)♦2/{x}P (x, y))
= (∀x)(∃w1)(R(w0, w1) ∧ STw1((∀y)♦2/{x}P (x, y))
= (∀x)(∃w1)(R(w0, w1) ∧ (∀y)STw1(♦2/{x}P (x, y))
= (∀x)(∃w1)(R(w0, w1) ∧ (∀y)(∃w2/{x})(R(w1, w2) ∧ STw2(P (x, y)))
= (∀x)(∃w1)(R(w0, w1) ∧ (∀y)(∃w2/{x})(R(w1, w2) ∧ P (x, y, w2)))
= (∀x)(∃w1)(∀y)(∃w2/{x})(R(w0, w1) ∧ (R(w1, w2) ∧ P (x, y, w2)))

The prefix of this formula expresses partially ordered quantification. But is the slash necessary? It is
clear that the (∃w2) has to be within the scope of the (∀y) and out of the scope of the (∀x). What about
the (∃w1)? Must it remain within the scope of the (∀x)? The answer is no. A justification for this assertion
is as follows. Consider the following formula, which is derived by removing the (∀y) and the instances of
y from STw0(ϕ).

(∀x)(∃w1)(∃w2/{x})(R(w0, w1) ∧ (R(w1, w2) ∧ P (x, w2)))

Now, it is clear that the (∃w2) must be out of the scope of the (∀x). But is there a difference between
the following two formulas, one with the (∃w1) within the scope of the (∀x) and the other with the (∃w1)
out of the scope of the (∀x):

(∃w2)(∀x)(∃w1)(R(w0, w1) ∧R(w1, w2) ∧ P (x,w2)) (3.4)

and

(∃w1)(∃w2)(∀x)(R(w0, w1) ∧R(w1, w2) ∧ P (x,w2)) (3.5)

The answer is no. That is, (3.4) is equivalent with (3.5).4. For this reason, we can translate STw0(ϕ)
to

(∃w1)(∀y)(∃w2)(∀x)(R(w0, w1) ∧ (R(w1, w2) ∧ P (x, y, w2)))

which can be reverse translated into the CK formula

♦(∀y)♦(∀x)P (x, y).

Therefore

(∀x)(∀y)♦1/{y}♦2/{x}P (x, y) ≡t ♦(∀y)♦(∀x)P (x, y).

¥

4Automated Theorem Prover Otter used
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Fact 3.5 The IFCK formula (∀x)(∃y)¤1♦2/{x}P (x, y) can not be translated into an equivalent CK for-
mula.

Proof Let ϕ = (∀x)(∃y)¤1♦2/{x}P (x, y).

STw0(ϕ) = (∀x)(∃y)(STw0(¤1♦2/{x}P (x, y)))
= (∀x)(∃y)(∀w1)(R(w0, w1) → STw1(♦2/{x}P (x, y)))
= (∀x)(∃y)(∀w1)(R(w0, w1) → (∃w2/{x})(R(w1, w2) ∧ STw2(P (x, y))))
= (∀x)(∃y)(∀w1)(R(w0, w1) → (∃w2/{x})(R(w1, w2) ∧ P (x, y, w2)))
= (∀x)(∃y)(∀w1)(∃w2/{x})(R(w0, w1) → (R(w1, w2) ∧ P (x, y, w2)))

It is clear that the (∃w2) must be out of the scope of the (∀x) and in the scope of the (∀w1). The
(∃y) must be in the scope of the (∀x). Must it be out of the scope of the (∀w1)? The answer is yes. A
justification for this assertion is as follows. Consider the formula

(∀x)(∃y)(∀w1)(∃w2)(R(w0, w1) → (R(w1, w2) ∧ P (x, y, w2)))

which is simply the translation of

(∀x)(∃y)¤♦P (x, y)

Now, is it the same as the following formula, which is simply the result of swapping the (∃y) and (∀w1)

(∀x)(∀w1)(∃y)(∃w2)(R(w0, w1) → (R(w1, w2) ∧ P (x, y, w2)))

No, the two formulas are not equivalent5, so the (∃y) must be out of the scope of the (∀w1). Therefore,
STw0(ϕ) is an IF-FOL formula which exceeds the expressive power of FOL and can not be translated
into an equivalent CK formula.

¥

Fact 3.6 The IFCK formula (∀x)(∃y)(∀z)♦/{x}P (x, y, z) can not be translated into an equivalent FOL
formula.

Proof Let ϕ = (∀x)(∃y)(∀z)♦/{x}P (x, y, z)

STw0(ϕ) = (∀x)(∃y)(∀z)STw0(♦/{x}P (x, y, z))
= (∀x)(∃y)(∀z)(∃w1/{x})(R(w0, w1) ∧ STw1(P (x, y, z)))
= (∀x)(∃y)(∀z)(∃w1/{x})(R(w0, w1) ∧ P (x, y, z, w1))

It is clear that STw0(ϕ) is a genuine IF first-order logic formula. ¥

Corollary 3.1 The IFCK formula (∀x)(∃y)(∀z)♦/{x}P (x, y, z) can not be translated into an equivalent
CK formula.

Fact 3.7 The IFCK formula ¤1(∃x)(∀y)(∃z/{1})P (x, y, z) can not be translated into an equivalent FOL
formula.

5Automated Theorem Prover Otter used
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Proof Let ϕ = ¤1(∃x)(∀y)(∃z/{1})P (x, y, z)

STw0(ϕ) = (∀w1)(R(w0, w1) → STw1((∃x)(∀y)(∃z/{1})P (x, y, z)))
= (∀w1)(R(w0, w1) → (∃x)(∀y)(∃z/{1})P (x, y, z, w1))

It is clear that STw0(ϕ) is a genuine IF first-order logic formula. ¥

Corollary 3.2 The IFCK formula ¤1(∃x)(∀y)(∃z/{1})P (x, y, z) can not be translated into an equivalent
CK formula.

Remark IFCK has the same expressive power as the fragment of IF two-sorted logic obtained by taking
the image of IFCK under the translation STw defined in Section (2). This fragment is more expressive
than FOL as evidenced by certain facts above, but also obviously can not express simple IF-FOL formulas
such as

(∀x)(∃y)(∀z)(∃u/{x})(F (x, y, z, u))

Remark I have as yet found with definitive certainty an IFCK formula which has a FOL equivalent but
not a CK equivalent. I strongly suspect that the IFCK formula

ϕ = (∀x)(A(x) ∨¤1♦2/{x}B(x))

is one such formula. It is equivalent to the FOL formula

(∀w1)(∃w2)(∀x)(A(x,w0) ∨ (R(w0, w1) → ((R(w1, w2) ∧B(x,w2))))) (3.6)

(3.6) can not be reverse-translated (RT) into a CK formula via the standard translation. Such a
translation, RT (STw0(ϕ)), would convert the (∀w1) to the operator ¤1. However, this operator must only
bind the right disjunct, which is equivalent to moving the (∀w1) inwards so that it only binds the right
disjunct. However, doing so would violate the required scope ordering of (∀w1)(∃w2)(∀x)

It also seems that there is no CK formula θ such that (∀x)(A(x) ∨ ¤♦B(x)) ∧ θ ≡t (∀x)(A(x) ∨
¤1♦2/{x}B(x)).

4 Variable Domain Quantified Modal Logic

I now come to a briefer, though more interesting look at employment of the slash indicator in the context
of variable domain quantified modal logic.

Let VK / IFVK denote the variable domain versions of CK / IFCK. IFVK is exactly the same as
IFCK with the exception that for every w ∈ W , v maps w to a subset of D, that is, v(w) ⊆ D. v(w) is
the domain at world w. I will write it as Dw.

The truth conditions for the quantifers are:

• vw((∀x)A) = 1 iff for all d ∈ Dw, vw(Ax(cd)) = 1 (otherwise it is 0)

• vw((∃x)A) = 1 iff for some d ∈ Dw, vw(Ax(cd)) = 1 (otherwise it is 0)

Correspondingly, the game rules are adjusted so that when a player is to select a domain object, they
must choose from objects within the domain of the world which is the current state of the game. The
first-order translation of IFVK is the same as that given in Section 2 except that the clauses for the
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quantifiers are replaced by the following, where E is the special existence predicate:

STw((∀x)ϕ) = (∀x)(E(w, x) → STw(ϕ))
STw((∃x)ϕ) = (∃x)(E(w, x) ∧ STw(ϕ))
STw((∃x/{1,...,n})ϕ) = (∃x/{w1,...,wn})(E(w, x) ∧ STw(ϕ))

Fact 3.1 stated that

(∀x)♦1/{x}P (x) ≡t ♦(∀x)P (x) and ¤1(∃x/{1})P (x) ≡t (∃x)¤P (x)

Let us see how these equivalences fare in IFVK.

Fact 4.1 The equivalence (∀x)♦1/{x}P (x) ≡t ♦(∀x)P (x) does not hold in IFVK.

Proof Let ϕ1 = ♦(∀x)P (x) and ϕ2 = (∀x)♦/{x}P (x)

STw0(ϕ1) = (∃w1)(R(w0, w1) ∧ STw1((∀x)P (x))) STw0(ϕ2) = (∀x)(E(w0, x) → STw0(♦/{x}P (x)))

= (∃w1)(R(w0, w1) ∧ (∀x)(E(w1, x) → STw1(P (x)))) = (∀x)(E(w0, x) → (∃w1/{x})(R(w0, w1) ∧ STw1(P (x))))

= (∃w1)(R(w0, w1) ∧ (∀x)(E(w1, x) → P (x, w1))) = (∀x)(E(w0, x) → (∃w1/{x})(R(w0, w1) ∧ P (x, w1)))

= (∃w1)(∀x)(R(w0, w1) ∧ (E(w1, x) → P (x, w1))) = (∃w1)(∀x)(E(w0, x) → (R(w0, w1) ∧ P (x, w1)))

∴ STw0(ϕ1) 6= STw0(ϕ2). In fact, neither of the arguments (∀x)♦1/{x}P (x) ` ♦(∀x)P (x) and ♦(∀x)P (x) `
(∀x)♦1/{x}P (x) are valid in IFVK. ¥

It is clear that without this equivalence, the formula (∀x)♦1/{x}P (x) is not reducible to a formula in
IFVK.

Fact 4.2 The equivalence ¤1(∃x/{1})P (x) ≡t (∃x)¤P (x) does not hold in IFVK.

Proof Let ϕ1 = (∃x)¤P (x) and ϕ2 = ¤1(∃x/{1})P (x)

STw0(ϕ1 = (∃x)(E(w0, x) ∧ STw0(¤P (x))) STw0(ϕ1) = (∀w1)(R(w0, w1) → STw1((∃x/{1})P (x)))

= (∃x)(E(w0, x) ∧ (∀w1)(R(w0, w1) → STw1(P (x)))) = (∀w1)(R(w0, w1) → (∃x/{1})(E(w1, x) ∧ STw1(P (x))))

= (∃x)(E(w0, x) ∧ (∀w1)(R(w0, w1) → P (x, w1))) = (∀w1)(R(w0, w1) → (∃x/{1})(E(w1, x) ∧ P (x, w1)))

= (∃x)(∀w1)(E(w0, x) ∧ (R(w0, w1) → P (x, w1))) = (∃x)(∀w1)(R(w0, w1) → (E(w1, x) ∧ P (x, w1)))

∴ STw0((∃x)¤P (x)) 6= STw0(¤1(∃x/{1})P (x)). In fact, neither of the arguments ¤1(∃x/{1})P (x) `
(∃x)¤P (x) and (∃x)¤P (x) ` ¤1(∃x/{1})P (x) are valid in IFVK ¥

It is clear that without this equivalence, the formula ¤1(∃x/{1})P (x) is not reducible to a formula in
IFVK.

Failure of these basic equivalences emphasises the significance of employing the slash independence
indicator in the context of variable domain quantified modal logic. In the case of (∀x)♦1/{x}P (x), since
our domain might increase, the ♦ cannot precede the (∀x). However we still might want a way of saying
that there is a particular world which the current world accesses such that the property P holds at the
accessed world for every object in the actual world.

In the case of ¤1(∃x/{1})P (x), the slash expresses the restriction that although the domains between
worlds may vary, there must be at least one object common to the domains of each world accessed by the
current world for which P holds at each world accessed. As an extreme example, consider the difference
between the following two:

(∀x)x 6= x ∧ (∃x)¤A(x) ` and(∀)x 6= x ∧¤1(∃x/{1}A(x) 0 (4.1)

Since these two basic equivalences do not hold, it follows that equivalences observed with regard to
IFCK do not hold in IFVK. These arguments can however be made valid by adding strengthening
conditions to IFVK:
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Definition Domain increasing condition: if wRw′ then Dw ⊆ Dw′

Definition Domain decreasing condition: if wRw′ then Dw′ ⊆ Dw

Definition Frame Reflexivity: (∀x)R(x, x)

Definition Negativity Constraint: If v(P (d1, ..., dn)) = 1 then v(E(d1)) = 1,...,v(E(dn)) = 1.

Fact 4.3 Given the domain increasing condition, the argument ♦(∀x)P (x) ` (∀x)♦1/{x}P (x) is valid in
IFVK.

Fact 4.4 Given the domain increasing condition, the argument (∃x)¤P (x) ` ¤1(∃x/{1})P (x) is valid in
IFVK.

Fact 4.5 Given the domain decreasing condition, the argument (∀x)♦1/{x}P (x) ` ♦(∀x)P (x) is valid in
IFVK.

Fact 4.6 Given the domain decreasing condition, the argument ¤1(∃x/{1})P (x) ` (∃x)¤P (x) is valid in
IFVK.

Fact 4.7 Given the reflexivity constraint, the argument ¤1(∃x/{1})P (x) ` (∃x)¤P (x) is valid in IFVK.

Fact 4.8 Given the negativity constraint, the argument (∃x)¤P (x) ` ¤1(∃x/{1})P (x) is valid in IFVK.

Thus the addition of certain variable-domain preserving collections of hybrid constraints can have an
effect on the validity of some basic equivalences. For example, given the collection of the domain increasing
and reflexivity constraint, the basic equivalence ¤1(∃x/{1})P (x) ≡t (∃x)¤P (x) holds.

Despite this, there remain equivalences observed in Section 3 which would still not hold given the
availability of this equivalence. For example, the equivalences observed in Fact 3.2 rely on the equivalence
(∀x)¤A ≡ ¤(∀x)A, which fails unless domain of quantification is both decreasing and increasing.

Also, note that whilst the following two arguments are valid in IFVK

¤(∃x)¬P (x),♦(∀x)P (x) `IFV K

(∀x)♦¬P (x), (∃x)¤P (x) `IFV K

The following two counterparts are not

¤(∃x)¬P (x), (∀x)♦/{x}P (x) 0IFV K

(∀x)♦¬P (x),¤1(∃x/{1})P (x) 0IFV K

5 Applications/Motivations

In this section, feeding off results of the last section, I take a look at what can be done with informa-
tional independence in intensional contexts. In general, the incorporation of informational independence
raises new possibilities with regard to symbolising and analysing natural language statements and tackling
philosophical issues. In discussion that follows, as well as considering examples involving the alethic modal
operators (¤ and ♦), I will be considering epistemic, doxastic and temporal logic examples as well. Before
continuing, I will now briefly clarify the terminology used in such logics. With temporal logic, the two
counterparts to the ¤ operator are the operators [F ] and [P ], which stand for ’It is always going to be the
case that’ and ’It always has been the case that’ respectively. The two counterparts to the ♦ operator are
the operators 〈F 〉 and 〈P 〉, which stand for ‘At some time in the future it will be the case that’ and ‘At
some time in the past it has been the case that’ respectively. The epistemic counterpart of ¤ is the operator
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Ka, which stands for ‘a knows that’. The doxastic counterpart of ¤ is the operator Ba, which stands for
‘a believes that’. The ♦ operator counterparts for epistemic and doxastic logic are not as standard. I will
here take the epistemic counterpart to be the operator Ca, which stands for ‘a finds it credible that’, and
the doxastic counterpart to be the operator Pa, which stands for ‘a finds it plausible that’. In examples
where it is not required, modal operators are not indexed. Also, although I do not specify a particular set
of frame conditions for these logics in discussion, I am mindful of the frame conditions which are associated
with each logic.

5.1

An important distinction in philosophy is the De Re / De Dicto distinction. There are two different
conceptions of this distinction which I am interested in.

Consider the following sentence, derived from an example due to Quine:

George believes that someone is a spy (5.1)

(5.1) is ambiguous in at least two ways. On one interpretation, (5.1) says that

George believes that there are spies (5.2)

Interpreted in this way, (5.1) does not entail that George has belief about any particular persons being
a spy. On the other interpretation of (5.1), George has not just the general belief that there are spies,
but believes of some particular person or persons, that they are spies. Interpreted in this way, (5.1) says
something like

There is someone who George believes is a spy (5.3)

With quantified modal logic, the distinction between (5.2) and (5.3) can be seen as a distinction of scope
for the existential quantifier involved. The logical formula representing the interpretation captured by (5.2)
(referred to as the de dicto reading) has the existential quantifier and the variable it binds occurring as
constituents of the relevant ‘believes that’ clause. In that case, the quantifier is said to have narrow scope
relative to the belief operator. With the logical formula representing the interpretation captured by (5.3)
(referred to as the de re reading), the quantifier occurs outside the scope of the relevant that-clause. On
the de re reading, the quantifier is said to have wide scope relative to the belief operator.

Where BG stands for ‘George believes that’ and S(x) stands for ‘x is a spy’, both (5.2) and (5.3) can
be respectively represented as

BG(∃x)S(x) (5.4)

and

(∃x)BGS(x) (5.5)

(5.4) rightly does not entail (5.5). Even if George believes that there are spies, it is clear that it does
not follow that he believes of anyone in particular that they are a spy. However, the converse implication
rightly holds. If George believes of someone in particular that they are a spy, then George believes there
exists at least one practitioner of the spying profession.

This idea also applies to alethic discourse. If it is necessary that something is good (¤(∃x)G(x)) it
does not follow that something is necessarily good ((∃x)¤G(x)). However, if something is necessarily good,
then it is necessary that something is good.

This distinction also applies to the distinction between (∀x)♦A(x) and ♦(∀x)A(x). (∀x)♦A(x) →
♦(∀x)A(x) says something like ‘if everything has the potential to be A, its possible for everything to be A’,
which will not always be the case. ♦(∀x)A(x) → (∀x)♦A(x) says something like ‘if it is possible for every-
thing to be A, everything has the potential to be A’, which does hold, as it should. The epistemic/doxastic
analogues of this example are less perspicuous. For example, ‘it is plausible that everything is A’, and
‘everything is plausibly A’, logically mean different things. The former implies the latter but the latter
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does not imply the former. Grasping this difference is facilitated by considering the difference between
their logical representations.

In general, statements are de re when they have quantifiers having scope over modal operators and
de dicto when they have modal operators having scope over quantifiers. In the examples just given, this
syntactic difference resulted in one of the model definability. But the De Re / De Dicto distinction need
not relate solely to this fact, as will now be discussed.

The Barcan Formula (∀x)¤A(x) → ¤(∀x)A(x) and the Converse Barcan Formula ¤(∀x)A(x) →
(∀x)¤A(x) are both valid in CK. Despite this equivalence between (∀x)¤A(x) and ¤(∀x)A(x), in a
sense they mean two different things. The former says that everything is such that it is necessarily A.
It attributes, that is, a necessary or essential property to each individual thing. This is made clearer, by
starting with (∀x)¤A(x), and substituting a name, a, for the variable x to get ¤A(a); we can see this as
saying that “the object denoted by a has the property of necessarily being A”. The modality is attached
to the object, a, hence the de re (which in Latin means ‘about the thing’). The latter says that it is
necessary that everything is A. It says, in other words, that (∀x)A(x) is a necessary truth. The modality is
attached to the proposition, (∀x)A(x), hence the de dicto (which in Latin means ‘about the proposition’).
Of course, with variable domain modal logic, neither the Barcan nor Converse Barcan Formulas hold, so
the distinction becomes important not only from a semantic/metaphysical perspective but from a model
defining one also, which as many have argued, should be the case.

5.2

The notion of informational independence offers an alternative treatment of the de dicto / de re distinction
without appeal to the notion of scope. Although by no means a threat to the utility of the notion of
relative quantifier scope in general, it is worth considering the alternative treatement of the distinction via
independence to see as to whether it has any advantages over the traditional treatment via scope.

Take epistemic logic as a representative case. To recap, as far as simple IF quantified modal logic
formulas involving a K and a ∃ go, there are three possible permutations:

Ka(∃x)S(x) (5.6)

(∃x) KaS(x) (5.7)

Ka(∃x/{K})S(x) (5.8)

By now it has been established why (5.6) is the logical form of

a knows that there are spies

and why (5.7) is the logical form of

someone is such that a knows that they are a spy

Although in the case of IFCK (5.7) and (5.8) are equivalent, (5.8) may be preferred over (5.7) for
symbolising certain knowledge statements. For example, in order to specify the semantics of knows that
statements, the de dicto formula (5.6) is correct. In order to specify the semantics of knows + wh-word
constructions such as

It is known who is a spy (5.9)

although (5.7) and (5.8) are model-theoretically equivalent, its syntactic structure perhaps makes (5.8)
preferable and captures the independence implicit in (5.9).
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5.3

In the case of variable domain quantified modal logic, the notion of informational independence becomes
more significant. As we saw in section 4, it is not the case that the equivalences

(∀x)♦1/{x}P (x) ≡t ♦(∀x)P (x) and ¤1(∃x/{1})P (x) ≡t (∃x)¤P (x)

hold in IFVK.
Here are some examples demonstrating the utility of the slash independence indicator in the context

of variable domain quantified modal logic.
Firstly, there are reasonable grounds for countenancing a variable domain of quantification in doxastic

contexts. Take the following example.([2], p. 166.) Consider the statement:

a believes that Holmes exists.

This translates easily to:
Ba(∃x)(Holmes = x) (5.10)

Similarly:
Although Holmes does not exist, a believes that Holmes does exist. (5.11)

This translates easily to:

¬(∃x)(Holmes = x) ∧ Ba(∃x)(Holmes = x) (5.12)

Both of these statements are perfectly meaningful. However, the employment of constant domain
quantified modal logic to analyse these statements is problematic. The translation (5.12) would be con-
tradictory, simply because the left conjunct is a contradiction. Similarly, if we used constant quantified
modal logic, then (5.10) would attribute a trivial belief to a because the content of their belief would be a
logical truth. This example concerning issues of existential import provide, I believe, justification for the
employment of a variable domain doxastic logic.6

(5.12) clearly expresses the de dicto reading of (5.11). What is the logical form of a de re version of
(5.11), such as the following?

Although Holmes does not exist, there is someone whom a believes to be Holmes (5.13)

Although (5.12) is satisfiable in the simplest variable domain quantified modal logic with identity, its
straightforward 7 VK de re counterpart

¬(∃x)(Holmes = x) ∧ (∃x)Ba(Holmes = x) (5.14)

is contradictory within a basic framework of necessary identity 8. One option is to treat ‘Holmes’ as a
non-rigid designator. Whilst technically this will mean that (5.14) is satisfiable, it provokes the question
of why Holmes should be treated as a non-rigid designator in the first place. It also says that what Holmes
refers to in the current world does not exist, which is not implausible, but also that what Holmes refers to
in the doxastic alternatives does not exist in the current world, which is very much a dubious commitment.
Furthermore, if we impose the negativity constraint, then the formula becomes unsatisfiable, for it dictates
that what Holmes refers to in the current world must exist.

A circumvention of such problems and much better treatment of this issue is afforded by employment
of the simplest of IFVK formulas. (5.13) is translated to

¬(∃x)(Holmes = x) ∧Ba(∃x/{B})(Holmes = x) (5.15)

6say, based on one of the KD systems, where the condition on frames of an epistemic logic expressed by Kaq → q is
replaced by Baq → q. So each state accesses at least one doxastic alternative in my considerations.

7Hintikka translates (∃x)Ka(b = x) as ‘a knows who b is’. This may not be a definitive sense of ‘knowing who’, but it is a
good place to start. See ([9], p. 167) for a discussion of this issue.)

8If a = b at world i, a = b at all other worlds.
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which arguably is the best candidate thus far to capture the meaning of (5.13). The set of models
which satisfy (5.15) are those which capture situations expressed by (5.13).

Extending this idea, consider the statement

Everything is believed by a to be F (5.16)

which translates to

(∀x)BaF (x) (5.17)

The assertion of this statement precludes the consistent assertion of the statement which translates to

(∃x)Ba¬F (x) (5.18)

Alternatively, it does not preclude the consistent assertion of the statement which translates to

Ba(∃x/{B})¬F (x) (5.19)

These examples serve as justification for the employment of ¤1(∃x/{1}) type formulas over (∃x)¤P (x)
type formulas to express de re modality in certain situations. It seems harder to construct an example in
which a slashed ‘plausible’ operator Pa/{x} operator is used.

Nontheless, a useful example is apparent for the employment of (∀x)♦1/{x}P (x) over ♦(∀x)P (x). With
constant domain quantified modal logic, the alethic expressions

It is possible that everything is F (5.20)

and

Everything is possibly F (5.21)

can be translated into ♦(∀x)P (x) and (∀x)♦P (x) respectively. However, the tight correlation between
(5.20) and ♦(∀x)P (x) gives way to ambiguity when it comes to a variable domain of quantification. With
a variable domain of quantification, a means to logically capture the following qualified version of (5.20)
is definitely worth having. If what is meant by (5.20) is something like

It is possible that everything which actually exists is F (5.22)

then ♦(∀x)P (x) is insufficient. An adequate translation of (5.22) is (∀x)♦/{x}P (x). Surely the avail-
ability of such logical vocabulary to make such distinctions is advantageous.

Perhaps a most telling context for the consideration of informational independence is temporal discourse
and logic. A domain increasing constraint validates the implausible claim that if something exists now, it
will exist/has existed for all future/past times. A domain decreasing constraint validates the implausible
claim that nothing will exist/has existed unless it exists now. Given this, one definitely apt province for
variable domain quantification is quantified temporal logic.

Consider expressions involving temporal operators and quantification, where the quantification refers
to the set of currently existing (or non-existing individuals), independent of the time indicated by the
temporal operator. Contrast the two sentences:

At some time in the future everything will be A (5.23)

At some time in the future everything which currently exists will be A (5.24)

An adequate translation of 5.23 is 〈F 〉(∀x)A(x). But an adequate translation of 5.24 is (∀x)〈F 〉/{x}A(x).
Similarly with the contrast between the two sentences:

At some time in the past everything was A (5.25)
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At some time in the past everything which currently exists was A (5.26)

An adequate translation of 5.25 is 〈P 〉(∀x)A(x). But an adequate translation of 5.26 is (∀x)〈P 〉/{x}A(x).
Furthermore, since we are free to quantify over predicates which are not within the scope of the modal

operator, we can attribute a property specifically to all currently existing objects, allowing us to construe
the logical form of the sentence

At some time in the future, every currently existing A will be B (5.27)

to be the IFVK formual (∀x)(A(x) → 〈F 〉/{x}B(x))
This theme can be extended to expressions involving universal temporal operators and existential

individual quantification. The logical form of the statement

There is something which will always be A. (5.28)

is (∃x)[F ]A(x), whilst the statement

It is always going to be the case that something is A (5.29)

could mean either [F ](∃x)A(x) or [F ](∃x/{[F ]})A(x)
An adequate translation of 5.23 is (∃x)[F ]A(x). But an adequate translation of 5.24 is [F ](∃x/{[F ]})A(x).
The availability of IFVK terminology might also be used to good effect by a temporal reasoning

system to resolve inconsistency. For example, if the datum (∀x)〈F 〉¬B(x) is present in a system to which
is added the datum (∃x)[F ]B(x), an inconsistent state of affairs results. A resolution of this inconsistency
by changing one of the formulas might result in the state of affairs which was actually intended by the
input. (∃x)[F ]B(x) could be swapped for [F ](∃x/{[F ]}B(x)).

These are just some cursory examples which await further development.

5.4

Hintikka is keen on advocating the idea that independence offers a new tool for discussing epistemic logic
and the logic of questions and answers. In ([3], p. 83. and [4], p. 377.), he provides some cursory examples
of formalising epistemic statements. Since he does not formally specify a background logic, it is difficult
to definitively judge the correctness of what he says. I am very sure that the epistemic predicate logic he
outlines in his seminal work Knowledge and Belief is effectively a variable domain quantified modal logic,
yet in his discussion he acknowledges the equivalence between (∃x)KS(x) and K(∃x/K)S(x), from which
one could make the assumption that his discussion is within a constant domain context.

He considers a construction where the choice of the operative variable depends on the choice of a
universal quantifier, as in:

It is known whom each person admires most (5.30)

and claims that an adequate representation of this knowledge statement requires informational inde-
pendence. A suitable translation of (5.30) is:

K(∀x)(∃y/K)A(x, y) (5.31)

which he claims does not allow easily for a formulation in terms of a linear sequence of quantifiers plus
K.

If we try to express it on the first-order level without independent quantifiers, we run into an
unsolvable dilemma. Since (∃y) depends on (∀x), it should come later than (∀x). But since it
is independent of K, it should precede K and hence also (∀x).([3], pg. 85.)
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Given a constant domain of quantification, the claim that “we run into an unsolvable dilemma” is
incorrect, at least from the perspective of being able to find a truth-preserving formulation in terms of a
linear sequence of quantifiers plus K. We saw in Theorem 3.2 that we can swap the ∀ and K, so 5.31 can
be translated to

(∀x)(∃y)KA(x, y). (5.32)

In doing so however, the ∀ and K must be syntactically swapped. With the logical form of the original
formula, the (∀x) has wide scope relative to K. With the logical form of the translation, the (∀x) has
narrow scope relative to K. So despite this dispensability of the slash notation, its elimination may take
place at the expense of the syntactic structure of the formula and its ‘fit’ with the form of the natural
language statement it represents. Hence (5.30) may be better represented by (5.31) rather than (5.32).

One reason why this might be significant can be gathered from Hintikka’s suggestion that the logical
counterpart of the question ingredient of an indirect question in natural language can be a formula ex-
hibiting informational independence. “Any knowledge statement can serve as the desideratum of a direct
question, i.e. as a description of the cognitive state the questioner wants to achieve by his or her question.
For example, (5.31) is the desideratum of a question of the form

Whom does each person admire most?

If the slash expression is removed from the questioned ingredients, the presupposition of the question
is obtained. For example, the presupposition of (5.31) is

K(∀x)(∃y)A(x, y) (5.33)

Similarly, although ¤(∀x)(∃y/{¤})A(x, y) and (∀x)(∃y)¤A(x, y) are equivalent in a constant domain of
quantification, the former is seen as having de dicto necessity modality relative to the (∀x) and the latter
is seen as having de re necessity modality relative to the (∀x).

Of course, this difference becomes more significant in the context of variable domain quantification,
where the difference is both syntactical and model-theoretical. So if an epistemic first-order logic has a
variable domain of quantification, then (5.31) arguably serves as a better representation than (5.32) for
the logical form of (5.30). There are bound to be other good examples to be thought of and added to
those discussed in Section 5.3. One that comes to mind is this; to say of every future thing that there is
one thing in particular which they will always stand in a certain relation to, we realise that what is meant
is not [F ](∀x)(∃y)M(x, y) but rather [F ](∀x)(∃y/{[F ]})M(x, y)

5.5

Some philosophers, notably Quine, have argued that de re constructions, in which a quantifier outside an
intensional context binds a variable occurring within an intensional context are problematic. We cannot,
he claims, straightforwardly quantify into a belief or other intensional context. Or to put it in slightly
different terms, intensional operators appear to block the interior reach of exterior quantifiers. He has
provided arguments against both de re necessity and de re propositional attitude descriptions. Given the
recent planetary reclassification of Pluto, consideration of Quine’s argument concerning the number of
planets in the solar system is apt. Consider:

1. 8 = number of planets

2. ¤8 > 7

3. ¤ the number of planets is greater than 7.

(3) does not follow from (1) and (2). So the necessity operator induces referential opacity. Consider
the statement.

(∃x)¤(x > 7) (5.34)
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For which object x is (5.34) rendered true? 8 or the ‘number of planets’? Well since 8 is just the
‘number of planets’, one should say that x is both 8 and the ‘number of planets’. But specify the object
as ‘8’ and the condition is rendered true; specify the object as ‘the number of planets’ and the condition
is rendered false. We here have a failure of substitution. Whether or not the claim is necessay depends,
not on the thing talked about, but on the way in which it is specified. If so Quine argues, there can be no
clear understanding of whether an open sentence like x > 7 is necessarily true or not.

It is clear that validity of the following argument is undesirable:

(¤(8 > 7) ∧ 8 = #planets) ` ¤(#planets > 7) (5.35)

The simplest identity in quantified modal logic of rigid designation and identity invariance validates
this argument. This problem is addressed by incorporating non-rigid designators into the language, which
have a world-variant denotation. In this case, #planets is a non-rigid designator, that may change its
denotation from world to world. This technique is well established in the literature.9 With this technique,
treating #planets as a non-rigid designator results in (5.35) not being valid. Although, whether or not this
technical device eradicates philosophical concerns about quantifying into modal contexts and the failure of
objectual satisfaction I am not in a position to authoritatively comment.

I do note however that independence friendly quantified modal logic may be of some use, since a simple
informationally independence formula affords a way to express the model-definability restriction imposed
by a de re formula without the need to quantify in. So the choice for an object x does not need to be made
in an intensional context. The formula relevant to this issue would be

¤(∃x/{¤})(x > 7) (5.36)

For (5.36) to be true, at each world accessed by the actual world, it must be the case that (∃x/{¤})(x >
7) is true. So there must be an x in each accessed world such that x > 7 is true. Furthermore, the chosen
x must be the same for each world. Consider the following model:

• W = {w0, w1, w2}
• w0Rw0, w0Rw1, w0Rw2

• D = {δ3, δ8, δ5}
• vw0(3) = δ3, vw0(5) = δ5, vw0(8) = δ8, vw0(#planets) = δ8

• vw1(3) = δ3, vw1(5) = δ5, vw1(8) = δ8, vw1(#planets) = δ3

• vw2(3) = δ3, vw2(5) = δ5, vw2(8) = δ8, vw2(#planets) = δ5

The difference between the semantical games corresponding to (5.34) and (5.36) might help clarify
matters.

In the game corresponding to (5.34), one of the names 8 or #planets can be firstly chosen. If 8 is
chosen for x, then for all worlds which Falsifier can choose, x > 7 is true. If #planets is chosen for x,
then if Falsifier chooses w0, x > 7 is true and for w1 and w2, x > 7 is false. With (5.36), the choice by
Falsifier of a world is made first. Secondly, the choice for x by Verifier is made in an extensional context
and immediately either does or does not satisfy x > 7. The choice of an object which satisfies x > 7 is
made relative to each world, so the truth of x > 7 does not depend on the choice of a binding modal
operator, yet must also be the same for each world.

5.6

Most of the discussion in this section has focused on informational independence within a variable domain
context. However, given the observations made earlier concerning the greater expressive power of IFCK
relative to CK, an example within a constant domain context is in order. It is conceivable that there

9See ? and ?
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are situations which can be better modeled with an IFCK formula rather than a CK formula. Here is a
mundane example, which should nontheless suffice for the sake of example.

Consider a set of situations involving restaurants, people and meals. The domain of quantification,
which to keep things simple is unrealistically small, contains two restaurants, two people and two dishes.
Furthermore, each of the two restaurants has each of the two dishes on their menu. We want to analyse
certain statements concerning the knowledge of a restaurant critic named Gil about who likes what and
where, using the predicate L(x, y, z) to express ‘y likes z at x’. The logical form of the statement:

Gil knows that there is some restaurant such that everybody likes some menu dish at that restaurant (5.37)

is the CK formula
KG(∃x)(∀y)(∃z)L(x, y, z) (5.38)

Consider the following two models, which model situations captured by (5.37). Both of these models
also rightly satisfy (5.38).

• M1

– W = {w0, w1, w2}
– w0Rw1, w0Rw2

– D = {Restuarant1, Restuarant2, P erson1, P erson2,Meal1,Meal2}

–

x y z w vw(L(x, y, z))
restaurant1 Person1 Meal1 w1 1
restaurant1 Person2 Meal2 w1 1
restaurant2 Person1 Meal2 w2 1
restaurant2 Person2 Meal1 w2 1

* For every x, y, z, w permutation not tabulated above, vw(L(x, y, z)) = 0

• M2

– W = {w0, w1, w2}
– w0Rw1, w0Rw2

– D = {Restuarant1, Restuarant2, P erson1, P erson2,Meal1,Meal2}

–

x y z w vw(L(x, y, z))
restaurant1 Person1 Meal1 w1 1
restaurant1 Person2 Meal2 w1 1
restaurant2 Person1 Meal1 w2 1
restaurant2 Person2 Meal2 w2 1

* For every x, y, z, w permutation not tabulated above, vw(L(x, y, z)) = 0

Now, say that as well as possessing the knowledge expressed by (5.37), Gil also knows which meal in
particular each person likes, but may not know which restaurant in particular it is at which they like the
meal. So, as well as 5.38

Gil knows which meal everybody likes (5.39)

The first model does not capture this situation while the second model does capture this situation
(With the second model, Gil knows that Person1 likes Meal1 and Person2 likes Meal2). Therefore, a
formula capturing the logical form of this set of situations must distinguish between M1 and M2 and in
general, between both types of situations. In order to achieve this, we must employ IFCK terminology.
The IFCK formula

KG(∃x)(∀y)(∃z/{K})L(x, y, z) (5.40)
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is not satisfied by M1 but is satisfied by M2 and in general will be satisfied only by models which
capture the second type of situation, so it does a better job of capturing 5.38 + 5.39.

This example shows that there is some utility in partially ordered quantification between quantifiers
and modal operators even in the case of constant domain quantified modal logic. In fact, the need for
independence indication to model such situations with IFCK is in a sense greater than the need for
independence indication in IF-FOL. With IF-FOL, over finite domains of quantification, quantifiers can
technically be removed in much the same way they can be removed with FOL; by reducing quantifiers
to a collection of propositions consisting of the instantiations of predicates which are joined by logical
connectives in such a way as to appropriately define the model. This strategy however is not available in
the case of IFCK because the only means of quantifying over worlds are the modal operators.
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